5 .

Languagés for Real-time Applications

Languages are an important implementation tool for all systems that include
embedded computers. To understand fully methods for designing software for such
systems one needs to have a sound understanding of the range of impiementation
Janguages available and of the facilities which they offer. The range of languages
with features for real-time use continues to grow, as do the range and type of
features offered. In this chapter we concentrate on the fundamental requirements
of a good language for real-time applications and will illustrate these with examples
drawn largely from Modula-2 and Ada. It is not the purpose of the chapter to
compare languages or to offer a complete discussion of ail the features of Modula-2
and Ada; such material can be found in the books listed in the Bibliography.

Choosing a language for writing software for embedded real-time systems is an
important and serious matter. The choice has implications for the safety, reliability
and costs of the final system. The major purpose of this chapter is to provide an
understanding of some of the features of programming languages that can influence
the choice. This chapter needs to be read in conjunction with the next chapter on
Operating systems since some important real-time features — access to the
underlying hardware, support for concurrency, intertask communication — are
determined by the interface between the language and the operating system.

The aims and objectives of this chapter are to:

e List, explain and prioritise the major requirements for a real-time language.

e Describe the features that assist in the construction of safe, reliable software.

e List and explain techniques used to support the division of code into
modules. _

e List and explain the major facilities required to support concurrency.

e Assess a language for its suitability for a particular type of application.

5.1 INTRODUCTION

Producing safe real-time software places heavy demands on programming
languages. Real-time software must be reliable: the failure of a real-time system can

155

156 Languages for Real-time Applications

be expensive both in terms of lost production, or in some cases, in the loss of human
life (for example, through the failure of an aircraft control system). Real-time
systems are frequently large and complex, factors which make development and
maintenance costly. Such systems have to respond to external events with a
guaranteed response time; they also involve a wide range of interface devices,
including non-standard devices. In many applications efficiency in the use of the
computer hardware is vital in order to obtain the necessary speed of operation.

Early real-time systems were necessarily programmed using assembly level
languages, largely because of the need for efficient use of the CPU, and access
interface devices and support interrupts. Assembly coding is still widely used for
small systems with very high computing speed requirements, or for small systems
which will be used in large numbers. In the latter case the high cost of development
is offset by the reduction in unit cost through having a small, efficient, program.
Dissatisfaction with assemblers (and with high-level languages such as FORTRAN
which began to be used as it was recognised that for many applications the
advantages of high-level languages outweighed their disadvantages) led to the
development of new languages for programming embedded computers. These
languages included CORAL 66, RTL/2 and more recently C. The limitation of all
of them is that they are designed essentially for producing sequential programs and
hence rely on operating system support for concurrency.

The features that a programmer demands of a real-time language subsume those
demanded of a general purpose language and so many of the features described
below are also present (or desirable) in languages which do not support real-time
operations. Barnes (1976) and Young (1982) divided the requirements that a user
looked for in a programming language into six general areas. These are listed below
in order of importance for real-time applications:

& Security.
Readability.
Flexibility.
Simplicity.
Portability.
¢ Efficiency.

In the following sections we will examine how the basi.c features of languages meet
the requirements of the user as given above. The basic language features examined
are:

® Variables and constants: declarations, initialisation.
e Data types — including structured types and pointers,
® Control structures and program layout and syntax.
® Scope and visibility rules.

® Modularity and compilation methods.

® Exception handling.

A language for real-time use must support the construction of programs that exhibit

Introduction 157

concurrency and this requires support for:

e Construction of modules (software components).
Creation and management of tasks.

Handling of interrupts and devices.

Intertask communication.

Mutual exclusion.

Exception handling.

Modern real-time languages differ in how they provide the above facilities.
There are two basic approaches: one is to provide a minimum set of language
mechanisms with the ability to extend the set; the other is to provide a more
extensive set of mechanisms from which the programmer can choose. The first
approach gives a simple clean language but at the expense of standardisation as each
user creates additional facilities (Modula-2 is an example of this approach), the
second approach leads to a more complex, but standardised, language. Ada,
CONIC and CUTLASS are examples of this latter approach.

5.1.1 Security

Security of a language is measured in terms of how effective the compiler and the
run-time support system is in detecting programming errors automatically.
Obviously there are some errors which cannot be detected by the compiler regardless
of any features provided by the language: for example, errors in the logical design
of the program. The chance of such errors occurring is reduced if the language
encourages the programmer to write clear, well-structured, code.

Language features that assist in the detection of errors by the compiler inchade:

good modularity support;

enforced declaration of variables;

good range of data types, including sub-range types;
typing of variables; and

® unambiguous syntax.

It is not possible to test software exhaustively and yet a fundamental requirement
of real-time systems is that they operate reliably. The intrinsic security of a language
is therefore of major importance for the production of reliable programs. In real-
time system development the compilation is often performed on a different
computer than the one used in the actual system, whereas run-time testing has to
be done on the actual hardware and, in the later stages, on the hardware connected
to plant. Run-time testing is therefore expensive and can interfere with the hardware
development program.

Economically it is important to detect errors at the compilation stage rather
than at run-time since the earlier the error is detected the less it costs to correct it.
Also checks done at compilation time have no run-time overheads. This is important

158 Languages for Real-time Applications

as a program will be run many more times than it is compiled. Reliance on run-time
checking frequently requires additional code to be inserted in the program (normally
done by the compiler) and this leads to an increase in program size and a decrease
in execution speed. In general strong typing gives good security at compilation time.

5.1.2 Readability

Readability is a measure of the ease with which the operation of a program can be
understood without resort to supplementary documentation such as flowcharts or
natural language descriptions. The emphasis is on ease of reading because a
particular segment of code will be written only once but will be read many times.
The benefits of good readability are:

® Reduction in documentation costs: the code itself provides the bulk of the
documentation. This is particularly valuable in projects with a long life
expectancy in which inevitably there will be a series of modifications.
Obtaining up-to-date documentation and keeping documentation up to date
can be very difficult and costly.

@ Easy error detection: clear readable code makes errors, for example logical
errors, easier to detect and hence increases reliability.

e Easy maintenance: it is frequently the case that when modifications to a
program are required the person responsible for making the modifications
was not involved in the original design — changes can only be made quickly
and safely if the operation of the program is clear.

Factors which affect readability are manifold and to some extent readability depends
on personal preference. The co-operation of the programmer is also required: it is
possible to write unreadable programs in any language. The readability of a
program is improved by the adoption of a clear layout which emphasises the
structure, and by the careful choice of variable names. The syntax of the language
and the layout of the code statements are the two most important factors that affect
the readability.

The major disadvantage of using languages that support good readability and
of writing readable code is that the source code is longer and it takes longer to write;
for all except short-lived software this is a small price to pay for the added security
and maintainability of the software.

5.1.3 Flexibility

A language must provide all the features necessary for the expression of all the
operations required by the application without requiring the use of complicated
constructions and tricks, or resort to assembly level code inserts. The flexibility of
a language is a measure of this facility. It is particularly important in real-time

Introduction 159

systems since frequently non-standard IfO devices will have to be controlled. The
achievement of high flexibility can conflict with achieving high security. The
compromise that is reached in modern languages is to provide high flexibility and,
through the module or package concept, a means by which the low-level (that is,
insecure) operations can be hidden in a limited number of self-contained sections of
the program.

5.1.4 Simplicity

In language design, as in other areas of design, the simple is to be preferred to the
complex. Simplicity contributes to security. It reduces the cost of training, it reduces
the probability of programming errors arising from misinterpretation of the
language features, it reduces compiler size and it leads to more efficient object code.
Associated with simplicity is consistency: a good language should not impose
arbitrary restrictions (or relaxations) on the use of any feature of the language.

5.1.5 Portability

Portability, while desirable as a means of speeding up development, reducing costs
and increasing security, is difficult to achieve in practice. Surface portability has
improved with the standardisation agreements on many languages. It is often
possible to transfer a program in source code form from one computer to another
and find that it will compile and run on the computer to which it has been
transferred. There are, however, still problems when the wordlengths of the two
machines differ and there may also be problems with the precision with which
numbers are represented even on computers with the same wordlength.
Portability is more difficult for real-time systems as they often make use of
specific features of the computer hardware and the operating system. A practical
solution is to accept that a real-time system will not be directly portable, and to
restrict the areas of non-portability to specific modules by restricting the use of low-
level features to a restricted range of modules. Portability can be further enhanced
by writing the application software to run on a virtual machine, rather than for a
specific operating system. A change of computer and operating system then requires
the provision of new support software to create a virtual machine on the new system.

5.1.6 Efficiency

In real-time systems, which must provide a guaranteed performance and meet
specific time constraints, efficiency is obviously important. In the early computer
control systems great emphasis was placed on the efficiency of the coding — both in
terms of the size of the object code and in the speed of operation — as computers

160 Languages for Real-time Applications

were both expensive and, by today’s standards, very slow. As a consequence
programming was carried out using assembly languages and frequently ‘tricks’ were
used to keep the code small and fast. The requirement for generating efficient object
code was carried over into the designs of the early real-time languages and in these
languages the emphasis was on efficiency rather than security and readability.

The falling costs of hardware and the increase in the computational speed of
computers have changed the emphasis. Also in a large number of real-time
applications the concept of an efficient language has changed to include
considerations of the security and the costs of writing and maintaining the program;
speed and compactness of the object code have become, for the majority of
applications, of secondary importance. There are, however, still application areas
where compactness and speed do matter: in the consumer market where production
runs may be 100 000 per year the ability to use a slower, cheaper CPU or to keep
down the amount of memory used can make a significant difference to the viability
of the product. Other areas in which speed matters are in the control of
electromechanical systems, aircraft controls and in the general area of signal
processing, for example speech recognition. The efficiency of a language depends
much more on the compiler and the run-time support than on the actual language
design.

5.2 SYNTAX LAYOUT AND READABILITY

The language syntax and its layout rules have a major impact en the readability of
code written in the language. Consider the program fragment given below:

BEGIN

NST := TICKS{() + ST;

T:=TICKS()+S5T;

LOOP

WHILE TICKSC()< NST DO (* nothing *) END;
T:=TICKS(); : .
CcC;

NST := T+5T;

IF KEYPRESSED() THEN EXIT;

END;

END;

END;

Without some explanation and comment the meaning is completely obscure. By
using long identifiers instead of, for example NS T and 5T, it is possible to make the
code more readable.

Syntax Layout and Readability 161

BEGIN

NEXTSAMPLETIME := TICKS()+SAMPLETIME;
TIME:=TICKS()+SAMPLETIME;

LOOP

WHILE TICKS()< NEXTSAMPLETIME DO (* NOTHING *)
END;

TIME:=TICKS();

CONTROLCALCULATION;
NEXTSAMPLETIME:=TIME+SAMPLETIME;

1F KEYPRESSED() THEN EXIT;

END;

END;

END;

The meaning is now a little clearer, although the code is not easy to read because
it is entirely in upper case letters.

We find it much easier to read lower case text than upper case and hence
readability is improved if the language permits the use of lower case text. It also
helps if we can use a different case (or some form of distinguishing mark) to identify
the reserved words of the language. Reserved words are those used to identify
particular language constructs, for example repetition statements, variable
declarations, etc. In the next version we use upper case for the reseérved words and
a mixture of upper and lower case for user-defined entities.

BEGIN

NextSampleTime := Ticks{)+SampleTime;
Time:=Ticks{()+SampleTime;

LOOP

WHILE Ticks()< NextSampleTime DO (* nothing *)
END;

Time:=Ticks();

ControlCalculation;

NextSampleTime := Time+SampleTime;

IF KeyPressed()THEN EXIT;

END;

END;

END;

The program is now much easier to read in that we can easily and guickly pick out
the reserved words. It can be made even easier to read if the language allows
embedded spaces and tab characters to be used to improve the layout.

162 Languages for Real-time Applications

BEGIN (* Main program *)
NextSampleTime := Ticks() + SampleTime;
Time :=Ticks() + SampleTime;
LOOP
WHILE Ticks() < NextSampleTime DO
(* nothing *)
END (* of WHILE *);
Time :=Ticks();
ControlCatculation;
NextSampleTime := Time + SampleTime;
IF KeyPressed() THEN EXIT;
END (* IF *);
END (* of LOOP *);
END (* MAIN *).

The exact form of layout adopted is a matter of house style or of personal
preference. Modula-2 does not allow names to contain embedded spaces or
characters such av the underscore as separators, so it is usual to capitalise the first
letter of each word in a compound name.

Modula-2 requires reserved words to be written in upper case. it is also case
sensitive; for example, Time and time would be treated as different entities. Ada
is case insensitive but a convention has been established that reserved words are
written in lower case and application entities in upper case, with the underscore
character used as the separator for compound names. Adopting this approach the
code fragment given above would be written as shown below.

begin (* Main program *)
NEXT_SAMPLE_TIME :=TICKS() + SAMPLE_TIME;
TIME ;= TICKS() + SAHPLE_TIHE;
loop
while TICKS () < NEXT_SAHPLE_TIME do
(* nothing *)
end (* of while *);
TIME := TICKS();
CONTROL CALCULATION;
NEXT_SAMPLE_TIME := TIME + SAMPLE_TIHE;
if KeyPressed() thenexit;
end (* if *);
end (* of Loop ™) ;
end (* main *) .

Cooling (1991, p. 269) reports that some Ada programmers consider the adoption
of this convention to have been a mistake in that it makes it more difficult to read
the code. In the examples illustrating some features of Ada which are given later in
this chapter, Modula-2 style is used with upper case for the reserved words.

Declaration and Initialisation of Variables and Constants 163

5.3 DECLARATION AND INITIALISATION OF VARIABLES AND
CONSTANTS

5.3.1 Declarations

The purpose of declaring an entity used in a program is to provide the compiler with
information on the storage requirements and to inform the system explicitly of the
names being used. Languages such as Pascal, Modula-2 and Ada require all objects
to be specifically declared and a type to be associated with the entity when it is
declared. The provision of type information allows the compiler to check that the
entity is used only in operations associated with that type. If, for example, an entity
is declared as being of type REAL and then it is used as an operand in jogical
operation, the compiler should detect the type incompatibility and flag the statement
as being incorrect.

Some older languages, for example BASIC and FORTRAN, do not require
explicit declarations; the first use of a name is deemed to be its declaration. In
FORTRAN explicit declaration is optional and entities can be associated with a type
if declared. If entities are not declared then implicit typing takes place: names
beginning with the letters I-N are assumed to be integer numbers; names beginning
with any other letter are assumed to be real numbers.

Optional declarations are dangerous because they can lead to the construction
of syntactically correct but functionally erroneous programs. Consider the following
program fragment:

100 ERROR=0

200 IF X=Y THEN GOTO 300
250 EROR=1
300 ...

400 1F ERROR=0 THEN GOTO 1000

In FORTRAN (or BASIC), ERROR and EROR will be considered as two different
variables whereas the programmer’s intention was that they should be the same —
the variable EROR in line 250 has been mistyped. FORTRAN compilers cannot
detect this type of error and it is a characteristic error of FORTRAN. Many
organisations which use FORTRAN extensively avoid such errors by insisting that
all entities are declared and the code is processed by a preprocessor which checks
that all names used are mentioned in declaration statements.

The implicit typing which takes place in FORTRAN can also lead to confusion

164 Languages for Real-time Applications
and misinterpretation. Consider the program fragment

REAL KP,KD,KI
INTEGER DACY,ADCV

100 DACV=KP* (KD/KI)

END
A programmer reading the statement with the label 100, without reference to the
declaration statement, might assume that the variables on the right-hand side of the
statement are all integers ‘and that the resultant value is then floated and assigned
to areal variable, whereas the statement is doing just the opposite: the variables KP,
KD and K1 are real and the resultant is truncated and assigned to an integer
variable.

A common method of avoiding this problem is to insist that all variable names
conform to the implicit typing rules. Meaningful names that do not conform are
prefixed with an appropriate letter. Therefore a normally implicit real name used for

an integer is prefixed I and a normally implicit integer name used for a real number
is prefixed X. The above fragment is written

REAL XKP, XKD, XKI
INTEGER IDACV, TADCYV
100 IDACY = XKP* (XKD/XKI)

The most notorious example of the lack of security in programs written in
FORTRAN is the error that caused the misdirection of the Voyager spacecraft. The
FORTRAN statement intended was

D0 201 =1,100
which is a loop construct. What was typed was

b0 20I =1.,100
Because embedded spaces in names are ignored and variables need not be declared,
the FORTRAN compiler treated the characters to the left of the assignment operator

as a variable name D0201, and because the name begins with the character b
treated it as a real number and assigned the value 1.100 to it.

5.3.2 Initialisation

It is useful if a variable can be given an initial value when it is declared. It is bad
practice to rely on the compiler to initialise variables to zero or some other value.

Declaration and initialisation of Variables and Constants 165

This is not, of course, strictly necessary as a value can always be assigned to a
variable. In terms of the security of a language it is important that the compiler
checks that a variable is not used before it has had a value assigned to it. The security
of languages such as Modula-2 is enhanced by the compiler checking that all
variables have been given an initial value. However, a weakness of Modula-2 is that
variables cannot be given an initial value when they are declared but have to be
initialised explicitly using an assignment statement.

5.3.3 Constants

Some of the entities referenced in a program will have constant values either because
they are physical or mathematical entities such as the speed of light or 7, or because
they are a parameter which is fixed for that particular implementation of the
program, for example the number of control loops being used or the bus address
of an input or output device. It is always possible to provide constants by initialising
a variable to the appropriate quantity, but this has the disadvantage that it is
insecure in that the compiler cannot detect if a further assignment is made which
changes the value of the constant. It is also confusing to the reader since there is
no indication which entities are constants and which are variables (unless the initial
assignment is carefully documented).

Pascal provides a mechanism for declaring constants, but since the constant
declarations must precede the type declarations, only constants of the predefined
types can be declared. This is a severe restriction on the constant mechanism. For
example, it is not possible to do the following:

TYPE

AMotorState = (OFF,LOW,MEDIUM,HIGH);
CONST

motorStop = AMotorState(OFF);

A further restriction in the constant declaration mechanism in Pascal is that the
value of the constant must be known at compilation time and expressions are not
permitted in constant declarations. The restriction on the use of expressions in
constant declarations is removed in Modula-2 (experienced assembler programmers
will know the usefulness of being able to use expressions in constant declarations).
For example, in Modula-2 the following are valid constant declarations:

CONST
message = 'a string of characters’;
length =1.6;
breadth =0.5;
.area = 1length * breadth;

In Ada the value of the constant can be assigned at run-time and hence it is more

166 Languages for Real-time Applications

appropriate to consider constants in Ada as special variables which become read
only following the first assignment to them.

5.4 MODULARITY AND VARIABLES

5.4.1 Scope and Visibility

The scope of a variable is defined as the region of a program in which the variable
is potentially accessible or modifiable. The regions in which it may actually be
accessed or modified are the regions in which it is said to be visible.

Most languages provide mechanisms for controlling scope and visibility. There
are two general approaches: languages such as FORTRAN provide a single level of
locality whereas the block-structured languages such as Modula-2 provide multi-
level locality.

In the block-structured languages entities which are declared within a block may
only be referenced inside that block. Blocks can be nested and the scope extends
throughout any nested blocks. This is illustrated in Example 5.1 which shows the
scope for a nested PROCEDURE in Modula-2.

EXAMPLE 5.1

MODULE ScopeExample?;
VAR

A,B: INTEGER;
PROCEDURE LeveliQne;

VAR
B,C: INTEGER;
BEGIN
(*
LevelOne.B and LevelOne.{ visible here
*)
END (* LevelCne *);
BEGIN
(*

A and Bvisible here but not LevelOne.B and
LevelOne.C
*)
END ScopeExamplel.

The scope of variables A and 8 declared in the main module ScopeExampte?
extends throughout the program, that is they are global variables. However, because

Modularity and Variables ' 167

the variable name 8 is reused in PROCEDURE Leve L One it hides the global variable
8 while procedure LevelOne is executing. The scope of variables LevelOne.B
and LevelOne. [extends over PROCEDURE Leve lOne and both are visible within
the procedure.

As in this example, in a block-structured language an entity declared in an inner
block may have the same name as an entity declared in an outer biock. This does
not cause any confusion to the compiler which simply provides new storage for the
entity in the inner block and the entity in the outer block temporarily disappears,
to reappear when the inner block is left.

In Modula-2, as in most block-structured languages, variables declared inside
a procedure have storage allocated to them only while that procedure is being
executed. When the procedure is entered storage in RAM is allocated from available
memory (often referred to as heap); if no memory is available a run-time error is
generated. When an exit is made from the procedure the memory is released and can
be reused.

This dynamic allocation and release of memory leads to two problems:

e variables declared within a procedure cannot be used to hold vaiues for
reuse on the next entry to the procedure; and

e if a procedure is called recursively it is possible that the program may fail
because there is no more memory available.

Modula-2 overcomes the first of these problems through its use of a program unit
MODULE which has some specific properties. It is because of the second problem
that recursively called procedures should not be used in reai-time systems,
particularly if failure will compromise the safety of people or equipment (even if the
procedures do not declare any variables each call makes demands on the stack space
for storage of its volatile environment). To construct a safe system it must be
possible to predict the maximum memory requirements.

5.4.2 Glohal and Local Variables

Although the compiler can easily handle the reuse of names, it is not as easy for the
programmer and the use of deeply nested PROCEDURE blocks with the reuse of
names can compromise the security of a Pascal or Modula-2 program. As the
program shown in Example 5.2 illustrates the reuse of names can cause confusion
as to which entity is being referenced.

168 Languages for Real-time Applications

EXAMPLE 5.2
Loss of Visibility in Nested Procedures

MODULE Scopel?;
VAR X, Y, Z : INTEGER;
PROCEDURE L1;
VAR Y : INTEGER;
PROCEDURE L2;
VAR X : INTEGER;
PROCEDURE L3;
VAR Z : INTEGER;
PROCEDURE L&;

BEGIN
Y:=25; (*L1.YNOT LO.Y™)
END L&;
BEGIN
(*L1.Y, L2.X, L3.Z visible *)
END L3;
BEGIN
(*L1.Y, L2.X, LO.Z visible *)
END L2;
BEGIN
(* LO.X, L1.Y, L0.Z visible *)
END L1;
BEGIN
(* ... ™

END Scopel?2.

It is very easy to assume in assigning the value 25 to Y in PROCEDURE L4 that the
global variable ¥ is being referenced, when in fact it is the variable ¥ declared in
PROCEDURE L1 that is being referenced.

The argument over global or local declaration of entities has been almost as
fierce as that over the use of GOTO statements. The proponents of local declarations
argue that it is good practice to introduce and name entities close to where they are
to be used and thus to limit the scope of the entity and its visibility. Those arguing
in favour of global visibility of names claim that it is the only way in which
consistency and control of the naming of entities can be achieved for large systems
being developed by a team of programmers. They argue that local declaration leads
to duplication of names and difficulties in subsequent maintenance of programs. A
sensible compromise position is probably to declare globally the names of all entities
which directly relate to the outside world, that is to the system being modelled or
controlled, and to use local declaration for the names of all internal entities. Many

Modularity and Variables 169

of the difficulties disappear if the language permits explicit control over the scope
and visibility of entities and does not rely on default rules.

5.4.3 Control of Visibillty and Scope

Meodern approaches to software design place a lot of emphasis on modularity and
information hiding, both of which contribute to security. For effective use of
modularisation in program design a language must provide mechanisms that enable
the programmer to control explicitly the scope and visibility of all entities. This
includes the ability to extend the scope of entities declared within a program unit
to areas outside that unit. These problems have been addressed by a number of
language designers. Program units which provide the necessary facilities have been
devised; they are known by several different names, for example a cfass in SIMULA,
a module in Modula-2, a segment in ALGOL and a package in Ada.

5.4.4 Modularity

In Modula-2 the main program unit is a MODULE and local modules can be nested
within the main module. The nesting of modules is illustrated in Example 5.3.

EXAMPLE 5.3
Scope and Visibility Control in Modula-2

MODULE ImportExport;

- '

Title : Example of Import and Export of objects
File : sbt Importex.mod

LastEdit:

Author : 5. Bennett

*)

170 Languages for Real-time Applications

VAR a,b,c : INTEGER;
...
MODULE L1;
IMPORT a;
EXPORT d,q;
YARd,e,f : INTEGER;
MODULE L2;
IMPORT e, f;
EXPORT g,h;
VAR g,h,i : INTEGER;
L.
e, f,g,h,i visible here -
*)
END L2;
...
a,d,e,f,g,harevisible here
*y ’
END L1;
o ...
a,b,c,d,garevisible here
*
)]

END ImportExport.

To allow entities which are declared within the body of a module to be visible
outside the module they must be listed in an EXPORT list. Similarly entities which
are declared outside the module must be specifically imported into the module by
naming them in an IMPORT list. It should be noted that all entities can be imported
and exported, that is variables, constants, types and procedures. Entities which are
declared in a module are created at the initialisation of the program and remain in
existence throughout the existence of the program, that is they are not like entities
created inside a procedure which cease to exist when the procedure body is left.

The more general concept of a module allows a program to be split into many
separate units, each of which can be compiled separately. The facilities for
separation also allow for the construction of program libraries in which the library
segments are held in compiled form rather than as source code. In order to do this
the module is split into two parts:

DEFINITION MODULE - this contains information about entities which are
exported from the module;

TMPLEMENTATION MODULE — this is the body of the module which contains
the code which carries out the functions of the module,

The DEFINITION part is made available to the client program in source form,
but the IMPLEMENTATION part is only provided in object form and its source
code remains private to the module designer. The separation provides an
excellent method of hiding implementation details from a user, and the actual

Compilation of Modular Programs 171

implementation can be changed without informing the user, providing that the
DEFINITION part does not change. An example of a DEF INITION MODULE
is given in Example 5.4.

EXAMPLE 5.4
DEFINITION MODULE in Modula-2.

DEFINITION MODULE Buffer;
(t
Title ;: Example of definition module

File : sb1 Buffer.mod
*)

EXPORT QUALIFIED

put, get, noenEmpty, nonFull;
VAR

nenEmpty, nonFull : BOOLEAN; (* used to test the
status of buffer *)

PROCEDURE put (x : CARDINAL);

(* used to add items to the buffer *?
PROCEDURE get (VAR x: CARDINAL)Y

(* ysed to remove items from the buffer
END Buffer.

*)

5.5 COMPILATION OF MODULAR PROGRAMS

If we have to use a modular approach in designing software how do we compile the
modaules to obtain executable object code? There are two basic approaches: either
combine at the source code level to form a single unit which is then compiled, or
compile the individual modules separately and then in some way link the compiled
version of each module to form the executable program code. Using the second
approach a special piece of software called a linker has to be provided as part of
the compilation support to do the linking of the modules.

A reason for the popularity and widespread use of FORTRAN for engineering
and scientific work is that subroutines can be compiled independently from the main
program, and from each other. The ability to carry out compilation independently
arises from the single-level scope rules of FORTRAN:; the compiler makes the
assumption that any entity which is referenced in a subroutine, but not declared
within that subroutine, will be declared externally and hence it simply inserts the
necessary external linkage to enable the linker to attach the appropriate code. It
must be stressed that the compilation is independent, that is when a main program

172 Languages for Real-time Applications

is compiled the compiler has no information available which will enable it to check
that the reference to the subroutine is correct. For example, a subroutine may expect
three real variables as parameters, but if the user supplies four integer variables in
the call statement the error will not be detected by the compiler. Independent
compilation of most block-structured languages is even more difficult and prone to
errors in that arbitrary restrictions on the use of variables have to be imposed. Many
errors can be detected at the linking stage. However, because linking comes later in
the implementation process errors discovered at this stage are more costly to correct.
It is preferable to design the language and compilation system in such a way as to
be able to deétect as many errors as possible during compilation instead of when
linking.

Both Modula-2 and Ada have introduced the idea of separate compilation units.
Separate compilation implies that the compiler is provided with some information
about the previously or separately compiled units which are to be incorporated into
a program. In the case of Modula-2 the source code of the DEFINITION part of
a separately compiled module must be made available to the user, and hence the
compiler. This enables the compiler to carry out the normal type checking and
procedure parameter matching checks. Thus in Modula-2 type mismatches and
procedure parameter errors are detectable by the compiler. It also makes available
the scope control features of Modula-2.

The provision of independent compilation of the type introduced in FORTRAN
represented a major advance in supporting software development because it enabled
the development of extensive object code libraries. Languages which support
separate compilation represent a further advance in that they add greater security
and easy error checking to library use.

5.6 DATA TYPES

As we have seen above, the allocation of types is closely associated with the
declaration of entities. The allocation of a type defines the set of values that can be
taken by an entity of that type and the set of operations that can be performed on
the entity. The richness of types supported by a language and the degree of rigour
with which type compatibility is enforced by the language are important influences
on the security of programs written in the language. Languages which rigorously
enforce type compatibility are said to be strongly typed; languages which do not
enforce type compatibility are said to be weakly typed.

FORTRAN and BASIC are weakly typed languages: they enforce some type
checking; for example, the statements A$=25 or A=X$+Y are not allowed in
BASIC, but they allow mixed integer and real arithmetic and provide implicit type
changing in arithmetic statements. Both languages support only a limited number
of types. _ : o

An example of a language which is strongly typed is Modula-2. In addition to

Data Types 173

enforcing type checking on standard types, Modula-2 also supports enumerated
types. The enumerated type allows programmers to define their own types in
addition to using the predefined types. Consider a simple motor speed control
system which has four settings OFF, LOW, MEDIUM, HIGH and which is controlled
from a computer system. Using Modula-2 the programmer could make the
declarations:

TYPE

AMotorState = (OFF,LOW,MEDIUM,HIGH);
VAR

motorSpeed : AMotorState;

The variable motorSpeed can be assigned only one of the values enumerated in
the TYPE definition statement. An attempt to assign any other value will be trapped
by the compiler, for example the statement

motorSpeed := 150;

will be flagged as an error,

If we contrast this with the way in which the system could be programmed using
FORTRAN we can see some of the protection which strong typing provides. In
ANSI FORTRAN integers must be used to represent the four states of the motor
control:

INTEGER OFF, LOW,MEDIUM HIGH
DATA _OFF/UI,LOU/T/,HEDIUH/Z/,HIGHI?}/

If the programmer is disciplined and only uses the defined integers to set MSPEED
then the program is clear and readable, but there is no mechanism to prevent direct
assignment of any value to MSPEED. Hence the statements

MSPEED

=24
MSPEED = 15

0

would be considered as valid and would not be flagged as errors either by the
compiler or by the run-time system. The only way in which they could be detected
is if the programmer inserted some code to check the range of values before sending
them to the controller. In FORTRAN a programmer-inserted check would be
necessary since the output of a value outside the range 0 to 3 may have an
unpredictable effect on the motor speed. .

6.6.1 Sub-range Types

Another valuable feature which enhances security is the ability to declare a sub-
range of a type. In Modula-2 sub-ranges of ordinal types {that is, INTEGER, CHAR

- -

174 Languages for Real-time Applications

and ENUMERATED types) can be defined, The following statements define sub-range
types: '

TYPE
ADACVatue =0..255;
ALowerCaseChar = 'a', ,"z';

and if the variables are defined as

VAR
output : ADACValue;
character : ALowerCaseChar;

then the assignments

output = -25;
character := 'A';
will be flagged as errors by the compiler. The compiler will also insert run-time
checks on all assignment statements involving sub-range types and any assignment
which violates the permitted values will generate a run-time error. The use of sub-
range types can increase the security of a program, but in a real-time system full use
of sub-range types may not be appropriate. They can be used if the run-time system
permits the transfer of control to a user-supplied error analysis segment on detection
of a run-time error; if it does not and it terminates execution of the program then
the security of the system can be jeopardised by their use. Sub-range types can be
useful during the development stages of the system as violations of correctly set sub-
ranges can indicate logical errors in the code. For this reason many compilers
provide an option switch to control the inclusion of sub-range checking.
Sub-range types have been extended in Ada to include sub-ranges of REAL,
Again the usefulness is limited because of the extra code introduced in order to
check for violations. In applications involving a large amount of computation the
use of sub-ranges of REAL can significantly slow down the computation and hence
in many applications the efficiency requirements will necessitate the use of explicit
range checks at appropriate points rather than the use of compiler-supplied checks
through the use of sub-range types.

5.6.2 Derived Types

In many languages new types can be created from the implicit types: these are
known as derived types and they inherit all the characteristics of the parent type.
The use of derived types can make the meaning of the code clearer to the reader,

Data Types 175

for example

TYPE
AVoltage = REAL;
AResistance = REAL;
ACurrent = REAL;

VAR
¥1 : AVoltage;
R3 : AResistance;
I2 : ACurrent;
BEGIN
12 := V1/R3;
END;

In the above code the reader can easily see what is implied by the calculation: Ohm’s
law is being used to calculate the current flowing through a resistance. If the
statement read

12 := V1*R3;

then because 12 has been declared as of type ACurrent the reader would be
suspicious that there was an error in the line.

In a very strongly typed language such as Ada neither of the above statements
would be accepted by the compiler for although derived types inherit the properties
of the parent type they are treated as distinct types and hence are not compatible.
Strong typing of this form has the advantage that the compiler can detect errors such
as assigning V1 which represents a voitage to the variable 12, which represents a
current, as is shown in the first statement in the program fragment below, but it
would also flag as an error the perfectly legitimate operation shown in the second
statement:

—

Vi
LA

12
12 R3

In Ada this problem is overcome by a mechanism that permits operators on
types to be overloaded, that is the operator can be redefined to be compatible with
a different set of types. In this case the operator / would have to be defined as
performing the division operation with a variable of type AVoltage as the
dividend, a variable of type AResistance as the divisor and a variable of type
ACurrent as the resultant. It is arguable whether the benefits of the strong typing
outweigh the disadvantage of the complexity of overloading.

5.6.3 Structured Types

Many programming languages provide only one structured type, the array. Arrays,
though powerful, are limited in that all the elements of the array must be of the same

176 Languages for Real-time Applications

type. There are many applications in which it would be useful to be able to deciare
entities which are made up of elements of different types.

EXAMPLE 5.5

TYPE
AController = RECORD
inputAddress : INTEGER;
outputAddress : INTEGER;
maxOutput : REAL;
name : ARRAY [0..16] OF CHAR;
status : (OFF,ON);
END (* RECORD *);
VAR
airflow : AController;
fuelFlow : AController;
reactant : AController;

PROCEDURE Control (VAR loop : AControllier);
(* controller that is used to control several loops
*)
END (* CONTROL *);
BEGIN
LOOP
Control(fuelFlow);
Controi(reactant);
END (* LOOP *);
END.

In Example 5.5 the whole of the information relevant to a particular control
loop for the plant is contained in one variable of type RECORD. The advantages of
using a structure type such as the record structure is that the programmer does not
continually have to consider the details of the way in which the information relevant
to the variable is stored: it contributes to the process known as abstraction. In
addition to RECORD many of the modern languages support types such as FILE
and SET, :

5.6.4 Pointars

Pointers provide a mechanism for indirect reference to variables. They are widely
used in systems programming and in some data processing applications. They can
be used, for example, to create linked lists and tree structures. The unrestricted:

) DO... WHILE
TEST

REPEAT ... UNTIL

il ACTION ! ACTION
(a)
(THEN)
ACTION -
T
TEST
(1IF)
F
(ELSE) ACTION
(b}
ACTION
- ACTION
{©)
ACTION
1
i
——"J SELECT "
ACTION
i
ACTION-

(4

n

Figure 5.1 Standard structured program constructs: (a) seqguence; (b} decision;

(c) repetition; (d) selection.

178 Languages for Real-time Applications

availability of pointers, for example permitting pointers to entities of different types
to be interchanged, can give rise to insecurity. Implicit in the use of pointers is the
dynamic allocation and consequent deallocation of storage; the overheads involved
in the required mechanisms can be considerable and care in the use of pointer types
is necessary in real-time applications.

6.7 CONTROL STRUCTURES

There have been extensive arguments in the past about the use of both conditional
and unconditional 6070 statements in high-level languages. It is argued that the
use of G0TOs makes a program difficult to read and it has been shown that any
program can be expressed without the use of GOTOs as long as the language
supports the WHILE statement, the IF... THEN. .. ELSE conditional and
BOOLEAN variables. Most modern languages support such statements. The
standard structured programming constructs are shown in Figure 5.1,

From a theoretical point of view the avoidance of 60T0s is attractive. There
are, however, some practical situations in which the judicious use of a oT0 can
avoid complicated and confusing coding. An example of such a situation is when
it is required to exit from a loop in order to avoid further processing when a
particular condition occurs. :

EXAMPLE 5.6

-Consider the following scenario. A stream of data in character form is received from
a remote station over a serial link. The data has to be processed character by
character by a routine ProcessItem until the end-of-transmission character (EOT
— ASCH code =4) is received. The EOT character must not be processed.

A simple loop structure of the form i

REPEAT
get'(character);
ProcessItem(character):

UNTIL character = EOT;

cannot be used since the E0T character would be processed. Possible solutions are:
1.

Get(lharacter);

WHILE Character <> EQT DO
Processltem(character);
Get(Character)

END (* WHILE *):

Control Structures 179

2.

Finished 1= FALSE;
REPEAT
Get{Character);
IF Character = EOT THEN
Finished := TRUE
ELSE
processItem(Character)
END (* IF *);
UNTIL Finished;

A much cleaner solution is provided by the use of an EXIT statement as in the
fragment below:
3.

LOOP

Get(Character);

1F Character=EOT THEN

- EXIT

END (* IF *);

ProcessItem(Character);

END (* LOQP *);
(* EXIT causes a jump to statement here if EOT is
detected *)

The solution shown in (3) which is possible in Modula-2 is much clearer because all
the operations are shown within the LOOP statement, whereas in solutions (1) and
(2) some operation has to be performed outside the loop. Either the first character
has to be obtained before entering the loop or a Boolean variable has to be set before
the loop is entered. The general LOOP...END statement becomes particularly
valuable if several different exceptions require an exit from the loop.

A general non-terminating loop statement which car contain one or more EXIT
statements that result in control passing to the statement immediately following the
end of the loop is useful as is a RETURN statement (for use in PROCEDURES) that
results in an immediate exit from the PROCEDURE. Both are useful additions to
control structures. Although not strictly required they can lead to clearer and
simpler ¢coding. A program illustrating their use is given in Example 5.7.

EXAMPLE 5.7
Behaviour of RETURN and EXIT statements.

MODULE ReturnExitloop §

(t

Title ;: Example of different methods of Leaving LOOP
statement

*

180 Languages for Real-time Applications

FROM InQut IMPORT
WriteString, WritelLn;
IMPORT Terminal;
VAR
ch: CHAR;
return : BOOLEAN;

PROCEDURE ReadKey ;
B8EGIN
WriteString (*ReadKey called ');
LooP
WHILE NOT (Terminal.KeyPressed()) DO
(* do nothing ™)
END (* while *);
Terminal.Read(ch);
IF ch="r' THEN
RETURN
END (* if *);
IF ch="e" THEN
EXIT
END (* if *);
END {* Loop *);
WriteString ("this was EXIT not RETURN');
Writeln;
return:=FALSE
END ReadKey;
BEGIN
LOOP
return:=TRUE;
ReadKey;
IF return THEN } .
WriteString ("this was RETURN not EXIT');
Writeln
END (* if *);
WriteString ('To repeat typec, to stop any
other character');
WHILE NOT (Terminal.KeyPressed()) DO
(* do nothing ™)
"END (* while *);
Terminal.Read(ch);
IF ch<>'c" THEN
EXIT
END (* if *);
Writeln
END (* LOOP ™)
END ReturnExitloop.

Exception Handling _ 181

5.8 EXCEPTION HANDLING

One of the most difficult areas of program design and implementation is the
handling of errors, unexpected events (in the sense of not being anticipated and
hence catered for at the design stage) and exceptions which make the processing of
data by the subsequent segments superfluous, or possibly dangerous. The designer
has to make decisions on such questions as what errors are to be detected? What
sort of mechanism is to be used to do the detection? And what should be done when
an efror is detected?

Most languages provide some sort of automatic error detection mechanisms as
part of their run-time support system. Typically they trap errors such as an attempt
to divide by zero, arithmetic overflow, array bound violations, and sub-range
violations; they may also include traps for inputfoutput errors. For many of the
checks the compiler has to add code to the program; hence the checks increase the
size of the code and reduce the speed at which it executes. In most languages the
normal response when an errot is detected is Yo halt the program and display an
error message on the user’s terminal.

In a development environment it may be acceptable for a program to halt
following an error; in a real-time system halting the program is not acceptable as
it may compromise the safety of the system. Every attempt must be made to keep
the system running.

EXAMPLE 5.8
Error Checking

Consider a boiler control system (similar to the one described in Chapter 2). One
contro} loop uses the ratio of fuel flow and ait flow to calculate the set point for
the controller. Assume that the values of fuel flow and air flow are read from the
measuring instruments and stored in REAL variables fuelFlow and AirFlow
respectivety. The instruments provide values which are in the range 0.0 to 4096.0
corresponding to the flow ranges 0 to 100% . The control setting is to be held ina
real variable, RatioSetPoint. The programmer might write the statement:

RaticSetPoint := FuelFlow /{ AirFlow

A program using this statement may function correctly for a long period of time,
but suppose a fault either on the air flow measuring instrument or in the interface
unit results in Airflow being set equal to zero. The program, and hence the
systemn, would halt with an error — attempt to divide by zero.

One method of dealing with this problem is to validate the data prior to
executing the statement by adding code ta give

I1f AirFlow > 0 THEN
RatioSetPoint := FuelFlow/ AirFlow
ELSE
AirFlowAlarm := TRUE;
RatioSetPoint := DefaultvValue
END (* IF %);

182 Languages for Realtime Applications

An alternative method, if the language supports sub-ranges of REAL variables, is to
declare AirFiow to be in the range 0.0 to 4096.0 and to allow the compiler to insert
the necessary sub-range checks; but what happens when the compiler detects a sub-
range violation — does it simply halt the program? If it does, then nothing has been
gained,

In Example 5.8 it is easy for the programmer to put jn the necessary checks.
However, checking for all possible data errors can become very complex, can
obscure the general flow of the code, and can slow down execution.

A better solution for error handling in real-time systems is for the language to
be designed so as to allow the application software to deal with errors when they
are detected, and to pass the error on to the built-in error handling mechanism only
if the application software fails to deal with the error. We need the language run-
time support software to detect as many types of error as possible, to inform the
application software that an error exists, and to contain error handling routines that
will deal with the error if the application software does not do so.

One of the first languages to provide error handling in this way was BASIC with
its ON ERROR GOTO and ON ERROR GOSUB statements. Use of this type of statement
enables error trap foutines to be inserted in the application program and can
simplify the flow of the code as it permits grouping of the error handling and
analysis into one place. The run-time error can be checked and action taken to keep
the system running; if it cannot be kept running then at least there may be an
opportunity to close it down safely and warn the operator.

EXAMPLE 5.9
Using BASIC the problem given in Example 5.8 can be dealt with as follows:

1000 ON ERROR GOSUB 9500;
(ALl errors detected in the following lines of
code will be
(trapped and referred to the subroutine at Line
9500 until a
(further ON ERROR statement is executed,

1040

1050 RatioSetPoint = FuelFlow / AirFlow

1060

1070 REM A return from the ERROR subroutine at
9500 is made here.
(...
(Rést of code inserted here
(...

9500 REM Start of error hardler

9510 IF ERRORNO=DivideByZero THEN RatioSetPoint =

Defaultvalue
9520 ELSE GOTO ERRORTRAP
9530 RETURN

Exception Handling ' 183

The error detection mechanism is assumed to return an error ‘number to the
program; if this error number matches the attempt to divide by zero error number
then RatioSetPoint is set to a default value, otherwise the error was not
expected at this point and has to be either passed to some more general error analysis
routine or returned to the underlying default error handler which will normally halt
the running of the program.

The obvious advantage of this approach is that the designer can consider the
normal function and the error actions as two separate problems. It also has the
advantage that execution speed is improved and in more complex cases the
readability of the code is improved. The disadvantage is that it encourages reliance
on the run-time system to catch errors rather than careful consideration of the
possible errors.

The use of error trapping or exception statements requires careful consideration
of the action which follows the execution of the error handling routine. In Example
3.9 it is assumed that execution resumes at the next statement after the statement
which generated the error. Alternatively we could have written the example as
follows:

1000 ON ERROR GOTO 9500;
1040 :
1050 RatioSetPoint = FuelFlow / Airflow
1060
(...
(Rest of code inserted here
(...
9500 REM Start of error handler
9510 IF AirFlow <O THEN AirFlow = 100.0
9520 60T0 1050

In the above code, return is made to the statement that caused the error, the cause
of the error having been corrected (hopefully!). (A potential problem with returning
to the statement that caused the error to be raised is that if the correction is incorrect
the same error will be raised again and the software will cycle endlessly round the
same loop.) .

The facility to trap and return information on potentially fatal errors to the
application program is only one aspect of error handling. There will be abnormal
or error conditions which the underlying language support system will not detect.
For example, if in Example 5.9 the valid range of AirFlow was 100.0 to 4096.0
then there would be an error if A+ rFLlow was set to 50.0. This would not result in
system error (unless sub-range violations were being checked); however, the
application program designer would be helped if, having dealt with the immediate
problem, there was some means by which some further error analysis or error
handling could easily be invoked. It is always possible to write such error handling
mechanisms explicitly as Example 5.10 illustrates.

184 Languages for Real-time Applications

EXAMPLE 5.10

Suppose that the measured values of air flow and fuel flow obtained from the
instruments have to be converted to actual flow rates by taking the square root pf
the input value. An instrument error causing a negative input value results in an
errof return from the square root function. We wish to protect against this error and
also want to notify other parts of the system that an instrument error has been
detected. Hence we might code the conversion as follows:

BEGIN
IF RawFuelFlow <0 THEN
RawFuelFlow :=MinValueRawFuelFlow;
RaiseError('RawFuelFlow®)
END (* IF *);
Fuelflow := SQRT(RawFuelFlow);
IF RawAirFlow <=0 THEN
RawAirFlow := MinValueRawAirFlow;
RaiseError{'RawAirflow')
END (" IF *);
AirFlow : = SGRT(RawAirFlow);
RatioSetPoint := FuelFlow/AirFlow;
END

PROCEDURE RatseError{VYAR ErrorMessage: STRING);
(t

Procedure to raise alarms according to error
message value
*)
END RaiseError;

In Ada there is explicit language provision for handling errors. The above could
be written as follows:

PROCEDURE Convert_Flows;
BEGIN
IF Raw_Fuel_Flow <0 THEN
RAISE Fuel_Error;)
Fuel Flow := SQRT(Raw_Fuel_ Flow);
IF Raw_Air_Flow <=0 THEN
RAISE Air_Error;
Air_Flow : = SQRT(Raw_Air_Flow);
Ratio_Set_Point := Fuel_Flow/Air_Flow;
EXCEPTION
WHEN Fuel_Error =>
ALARM(Fuel);
WHEN Air_Error =>
ALARMCAiIr);
END Convert_Flows;

Exception Handling 185

The major problem in exception handling occurs when procedures are nested and
a report of the error has to be passed from one procedure to another.

EXAMPLE 5.11

Consider the following system:

PROCEDURE A;

BEGIN
B;
PROCEDURE
B;
BEGIN
C;
PROCEDURE C;
BEGIN
IF RawFuelFlow <0 THEN
RawFuelFlow =
MinvalueRawFuelFlow;
RaiseError('RawFuelFlLow')
END (* IF *);
FuelFlow :=
SQRT{(RawFuelFlow);
IF RawAirFlow <= 0 THEN
RawAirFlow :=
MinvalueRawAirFlow;
RaiseError('RawAirFlow')
END (* IF *);
Airflow : =
SQRT(RawAirFlow};
fuelfFlow :=
SQRT{RawFuelFlow};
END C;
END B;

(* value of AirFlow is to be used here
END A;

*)

In Example 5.11, if the value of RawAi rElow is found to be in error in
PROCEDURE € then the code in PROCEDURE & and in PROCEDURE A may not be

186 Languages for Real-time Applications

relevant if it requires a correct value for RawAirFLow. The standard means of
passing back the information that an incorrect value of RawhirF low has been
used is to pass an error flag value in the procedure calls, that is to change the simple
procedure calls to ones with the form PROCEDURE (¢* arguments *), VAR
ErrorMessage:STRING).

Ada offers an alternative solution in that when an exception is raised it is passed
from block to block until the appropriate exception handler is found, Thus in the
above example, if the exception was raised in PROCEDURE ¢ and there was no
exception handler in ¢, then ¢ would be terminated and control would pass to B;
if there were no handler in B it would also be terminated and control passed to A,

One special purpose language, CUTLASS, which was developed for real-time
use, offers an interesting approach to this problem. It marks data as bad by using
one bit in the storage used for data values as a tag bit. When an error is detected
the data value is marked as bad and then allowed to propagate normally through
the system. Any action needed to deal with bad data is then taken at the point at
which it is used. The rules used in the propagation of bad data produce a result
which is marked as bad if any of the operands in an arithmetic operation are bad.
An exampie illustrating the technique is given in Section 5.16.2,

5.9 LOW-LEVEL FACILITIES

In programming real-time systems we frequently need to manipulate directly data
in specific registers in the computer system, for example in memory registers, CPU
registers and registers in an inputfoutput device. In the older, high-level languages,
assembly-coded routines are used to do this. Some languages provide extensions to
avoid the use of assembly routines and these typically are of the type found in many
versions of BASIC. These take the following form:

PEEK(address) — returns as INTEGER variable contents of the location
address.
POKE(address, value) — puts the INTEGER value in the location address.

It should be noted that on eight-bit computers the integer values must be in the range
0to 255 and on 16 bit machines they can be in the range 0 to 65 535. For computer
systems in which the inputfoutput devices are not memory mapped, for example Z80
systems, additional functions are usually provided such as

INP(address) and
OUT(address, value).

A slightly different approach has been adopted in BBC BASIC which uses an
‘indirection’ operator. The indirection operator indicates that the variable which
follows it is to be treated as a pointer which contains the address of the operand

Low-level Facilities 187

rather than the operand itself (the term indirection is derived from the indirect
addressing mode in assembly languages). Thus in BBC BASIC the following code

100 PACAddress=&FE&D
120 ?DACAddress=&34

results in the hexadecimal number 34 being loaded into location FE60H; the
indirection operator is ‘?°.

In some of the so-called Process FORTRAN languages and in CORAL and
RTL/2 additional features which allow manipulation of the bits in an integer
variable are provided, for example

SET BIT J(I),
IFBITJ¢IY n1,n2 {where I refers to the bit in
variable J).

Also available are operations such as AND, OR, SLA, SRA, etc., which mimic the
operations available at assembly level. The weakness of implementing low-level
facilities in this way is that all type checking is lost and it is very easy to make
mistakes. A much more secure method is to allow the programmer to declare the
address of the register or memory location and to be able to associate a type with
the declaration, for example

VAR charout AT OFEGOH :CHAR;

which declares a variable of type CHAR located at memory location 0FE60H.
Characters can then be written to this location by simple assignment

charout :="'

a';
Note that the compiler would detect and flag as an crror an attempt to make the
assignment

charout := 45;

since the variable is typed. Both Modula-2 and Ada permit declarations of the above
type.

Modula-2 provides a low-level support mechanism through a simple set of
primitives which have to be encapsulated in a small nucleus coded in the assembly
language of the computer on which the system is to run. Access to the primitives
is through a module SYSTEM which is known to the compiler. SYSTEM can be
thought of as the software bus linking the nucleus to the rest of the software
modules. SYSTEM makes available three data types, WORD, ADDRESS, PROCESS,
and six procedures, ADR, SIZE, TSIZE, NEWPROCESS, TRANSFER,
IOTRANSFER. WORD is the data type which specifies a-variable which maps onto

188 Languages for Real-time Applications

one unit of the specific computer storage. As such the number of bits in a WORD will
vary from implementation to implementation; for example, on a PDP-1{
implementation a WORD is 16 bits, but on a 68000 it would be 32 bits. ADBRESS
corresponds to the definition TYPE ADDRESS = POINTER TO WORD, that is objects
of type ADDRESS are pointers to memory units and can be used to compute the
addresses of memory words. Objects of type PROCESS have associated with them
storage for the volatile environment of the particular computer on which Modula-2
is implemented; they make it possible to create easily process (task) descriptors {see
Chapter 6 for detailed information on task descriptors).
Three of the procedures provided by SYSTEM are for address manipulation:

ADRCv) returns the ADDRESS of variable v

SIZE(v) returns the SIZE of variable v in WORDs

TSIZE(t) returns the SIZE of any variable of type t
in WORDs .

In addition variables can be mapped onto specific memory locations. This facility
can be used for writing device driver modules in Modula-2. A combination of the
low-level access facilities and the module concept allows details of the hardware
device to be hidden within a module with only the procedures for accessing the
module being made available to the end user.

Example 5.12 shows the DEFINITION MODULE for the analog input and
output module for an 11/23 computer system. For normal use the two procedures
ReadAnalog and WriteAnalog are all that the user requires. Additional
information and procedures are made available to the expert user, including
information on the actual hardware addresses (these may vary from system to
system).

EXAMPLE 5.12
DEFINITION MODULE for a Device Handler

DEFINITION MODULE Analoglo;
(i
*)
(* Analog Input/Output
*

)

{(*Version0, $. White, 2-Jul-85, adapted from ADC and DAC ™)
(" modules. *)

Low-level Facilities 189

FROM SYSTEM IMPORT
ADDRESS;
EXPORT QUALIFIED
moduleName, moduleversion,
ReadAnalecg, WriteAnalog;
CONST
moduleName = '"AnaloglO’;
moduleversion=1;
PROCEDURE ReadAnalog{ adcNum: CARDINAL; VAR val: CARDINAL);
PROCEDURE WriteAnalog(dacNum; CARDINAL; val: CARDINALY);
(*Harduareconfiguration-expertuseonly*)
TYPE
AReadProc=PROCEDURE(CARDINAL,VARCARDINAL);
AWriteProc=PROCEDURE (CARDINAL, CARDINAL J;
PROCEDURE InitAnalog(
initProc: PROC; readProc: AReadProc;
writeProc: AMriteProc; doneProc: PROC);

PROCEDURE InitMNCAIOQ;

PROCEDURE ReadMNCAD(adcNum: CARDINAL; VAR val: CARDINAL J);
PROCEDUREHriteHNCAA(dacNum:CARDINAL:val:CARDINAL);
PROCEDURE DoneMNCAIO;

VAR
MNCADReg: POINTER TO
RECORD
CSR: BITSET; (* Control/Status ™)
DBE: CARDINAL (* BufferPreset ™)
END; '
MNCADVec;
RECORD
tonversionComplete: ADDRESS;
Error: ADDRESS;
END;
CONST
MNCADBaseReg = 1710008B;
MNCADBaseVec = 4008;
VAR
MNCAAReg: POINTER TO
RECORD
DACO: CARDINAL;
DAC1: CARDINAL;
DAC2: CARDINAL;
DAC3: CARDINAL;
END;
CONST

MNCAABaseReg=1710608;
END AnaloglQ.

190 Languages for Real-time Applications

5.10 CORQUTINES

In Modula-2 the basic form of concurrency is provided by coroutines. The two
procedures NEWPROCESS and TRANSFER exported by SYSTEM are defined as
follows:

PROCEDURE NEWPROCESS(ParameterlessProcedure:PROC;
workspaceAddress: ADDRESS;
workspaceSize: CARDINAL;

VAR coroutine: ADDRESS (* PROCESS *));

PROCEDURE TRANSFER{VAR source, destimation : ADDRESS
(*PROCESS™));

Any parameteriess procedure can be declared as a PROCESS. The procedure
NEWPROCESS associates with the procedure storage for the process parameters (the
process descriptor or task control block — see Chapter 6) and some storage to act
as workspace for the process. It is the programmer’s responsibility to allocate
sufficient workspace. The amount to be allocated depends on the number and size
of the variables local to the procedure forming the coroutine, and to the procedures
which it calls. Failure to allocate sufficient space will usually result in a stack
overflow error at run-time.

The variable corout ine is initialised to the address which identifies the newly
created coroutine and is used as a parameter in calls to TRANSFER. The transfer of
control between coroutines is made using a standard procedure TRANSFER which
has two arguments of type ADDRESS (PROCESS) . The first is the calling coroutine
and the second is the coroutine to which control is to be transferred. The mechanism
is illustrated in Example 5.13. In this example the two parameterless procedures
Coroutinel and Coroutine2 form the two coroutines which pass control to
cach other so that the message

coroutine one coroutine two

is printed out 25 times. At the end of the loop, Coroutine2 passes control back
to MainProgram.

EXAMPLE 5.13
Example Showing the Use of Coroutines

MODULE CoroutinesExample ;
(t
Title : Example of use of coroutines
*)
FROM SYSTEM IMPORT
ADDRESS, WORD, NEWPROCESS, TRANSFER, ADR, SIZE, PROCESS;
FROM InOut IMPORT
WriteString, Writein;

Interrupts and Device Handling 191

VAR
coroutinelld, coroutine2ld, MainProgram:
PROCESS; :
workspl, worksp2 : ARRAY [1..600] OF WORD;
PROCEDURE Coroutinel;
BEGIN
LoOP
WriteString('coroutine one');
TRANSFER(corpoutinelld, coroutine2ld);
END (* loop *J;
END Coroutinel;
PROCEDURE Coroutine2 ;
VAR
count : CARDINAL;
BEGIN
count : =0;
LOGP
WriteString (' coroutine two'd;
Writeln;
IF count=25 THEN
TRANSFER(coroutine2ld, MainProgram);
ELSE '
INC{count);
TRANSFER(coroutine2ld, coroutinetld?
END C* if *);
END (* toop *};
END Coroutineld;
BEGIN
NEWPROCESS(Coroutinel, ADR(workspl),
S1ZE{workspl?, coroutinelld);
NEWPROCESS{Coroutined, ADR{(worksp2),
$1ZE(worksp2), coroutine2id);
TRANSFER(MainProgram, coroutinelld)
END CoroutinesExamplie.

The fact that the concurrent programming implementation is based on
coroutines has led some commentators to state that Modula-2 cannot be used for
real-time systems. It cannot be used directly, but it is possible to use the primitive
coroutine operations to create a real-time executive as is described in Chapter 6.

5.11 INTERRUPTS AND DEVICE HANDLING

If full [JO device support is to be provided by a high-level janguage then the
language must provide support for the handling of interrupts. This demands support
for some minimum form of concurrent operation since an interrupt causes &

192 Languages for Real-time Applications

suspension of the running program (task) and the execution of some other code,
There are two basic approaches in language design to doing this: one is to provide
a set of low-level primitive operations which can be used either directly or to build
higher-level constructs; the other is to provide a high-level set of primitive
operations which must be used. Modula-2 is typical of the first method and Ada of
the second. In the following sections Modula-2 is used to illustrate the various
requirements.

Hardware interrupts can be handled from within a Modula-2 program. A device
handling process can enable the external device and then suspend itself by a call to
a procedure IOTRANSFER. This procedure is similar to TRANSFER but has an
additional parameter which allows the hardware interrupt belonging to the device
to be identified. When an interrupt occurs control is passed back to the device
routine by a return from IOTRANSFER.

The procedure, IOTRANSFER, has the format

IOTRANSFER (VAR interruptHandler : PROCESS;
interruptedProcess : PROCESS;
interruptvVector : CARDINAL)

The action of TOTRANSFER is to save the current status of inter ruptRandler
and to resume execution of interruptedProcess, that is to wait for an
interrupt. When an interrupt occurs the equivalent of

TRANSFER (interruptedProcess, interruptHandler)
occurs. A skeleton interrupt handler would thus take the form

BEGIN
LOOP

IOTRANSFER (interruptHandler, interruptedProcess,
interruptVector);
(*interrupt handler waits at this point for interrupt ™)

END Loop
END;

The interrupt handler code is placed inside the LOOP ... END construct, and is
initiated by an explicit TRANSFER operation; it then waits for an interrupt at the
IOTRANSFER statement. The first time this statement is executed control is
returned to the initiating task. Subsequent executions will be after an interrupt has
occurred and a return will be made to whichever task was interrupted.

An example of a Modula-2 program which uses the low-level facilities is given
in Example 5.14. This program illustrates a further requirement for low-level
support from the high-level language, namely the ability to handle interrupts. In the
example shown SuspenduntilInterrupt is a high-level procedure provided by

Concurrency - 183

- the module Processes which is part of a real-time support library (further
information about this is given in Chapter 6).

EXAMPLE 5.14

MODULE TermOutl4 (* interrupt priority of device *)];
FROM PROCESSES IMPORT

SuspendUntillnterrupt;
EXPORT

Putg;

CONST
readyBit =7;
jnterruptEnableBit = 6;
interruptYector = 648;
VAR
ttyReg[1775648] : BITSET;
ttyBuf[177566B) (CHAR;
PROCEDURE PutC{c: CHAR);
BEGIN
IF NOT(readyBit IN ttyReg) THEN
INCL(ttyReg, InterruptEnableBit};
(* high processor priority will fend off
the interrupt until ... ™)
SuspendUntiLInterrupt(interruptVector);
EXCL(ttyReg, interruptEnableBit);
END; (*IF™)
ttyBuf :=¢;
END PutC;
BEGIN
END TermOut;

This example also shows how Modula-2 handles bit-level manipulation. It is possible
to declare a register as of type BITSET and perform set operations on the régister.
The operators INCL and EXCL are respectively the operations of including a bit in
the set, that is setting a bit in the register, and excluding a bit from the set, that is

resetting a bit in the register.

5.12 CONCURRENCY

Wirth (1982) defined a standard module Processes which provides a higher-level
mechanism than coroutines for concurrent programming. The module makes no
assumption as to how the processes (tasks) will be implemented; in particular it does

194

Languages for Real-time Applications

not assume that the processes will be implemented on a single processor. If they are
$0 implemented then the underlying mechanism is that of coroutines. The
DEFINITION MODULE for Processes is as follows:

DEFINITION MODULE Processes ;

TYPE

SIGNAL;
(* opaque type: variables of this type are used to
provide synchronisation between processes. The
variable must be initialisedby acall to Init before use
*)

PROCEDURE StartProcess(P:PROC;
workSpaceSize:CARDINAL);
(* start a new process., P is parameterless procedure
which will form the process, workSpaceSize is the number
of bytes of storage which will be allocated to the

process
*)

- PROCEDURE Send (VAR s: SIGNAL);

(* If noprocesses are waiting for s, then SEND has no
effect. If some process is waiting for s then that
process is given control and is allowed to proceed
*)
PROCEDURE WAIT{(VAR s: SIGNAL);
(* The current process waits for the signal s. If at some
later time a SEND(s) is issued by ancther process then
this process will return from wait. Note i f all
processes are waiting the program terminates
*)
PROCEDURE Auaited(s:SIGNAL):BOOLEAN;
{(* Test to see if process is waitingons, if one or more
processes are waiting then TRUE is returned
*)]
PROCEDURE Init{s: SIGNAL);
(* The variable s is initialised,‘after initialisation
Awaited(s) returns FALSE
*)
END Processes.

Concurrency and multi-tasking will be dealt with in more detail in Chapter 6.

5.13 RUN-TIME SUPPORT

An important contributor both to the efficiency of implementation of a language
and to the run-time security are the run-time support mechanisms that are provided
by the particular implementation of the language. A problem with run-time support,
however, is that security and efficiency frequently come into conflict. One way of
trying to resolve the conflict is to provide optional run-time error checking and

Overview of Real-time Languages 185

trapping mechanisms. For test purposes the error traps are switched in but once the
software has been tested the error traps are switched out and the software runs
faster.

A typical example is the checking of array bounds. Many compilers allow the
insertion of check code as an option which is selected when the program is compiled.
This is an acceptable approach for standard programming: during the initial testing
the array bound check is selected but once the program appears 1o function correctly
it is omitted and hence the program runs faster. Although the facility is often used
in this way for real-time systems it is not a reliable solution. (Why not?)

There are two ways to do the array checking. Consider an array of 20 numbers
denoted by array[i] where i is an integer variable. For security the system must
ensure that whenever array(i] is used the condition 1 <7< 20 is satisfied. The first
way of checking is to insert a check before every array access to ensure that the
condition is not violated. An alternative technique, used by the more modern
compilers, is to check the condition whenever an assignment is made to i, The use
of the second method requires the co-operation of the programmer who must
specify the permitted range of variable i when it is declared. Provided that the
checking of the assignment of values to / is done then there is no need to check access
to array[i]. A further reduction in run-time checking is also found with this
technique in that a large number of the assignments to / can be tested during
compilation. The second method relies on the language being strongly typed. For
a secure, real-time system, the second method of array bound checking is obviously
preferable as it allows checking to remain in the final version of the software without
imposing large run-time overheads on the execution time.

For real-time systems the other important feature of the run-time support
software is whether it allows the application software to intercept the error traps.
This was discussed in the section above where we dealt with exception handling.

$.14 OVERVIEW OF REAL-TIME LANGUAGES

The best way to start an argument among a group of computer scientists, software
engineers or systems engineers is to ask them which is the best language to use for
writing software. Rational arguments about the merits and demerits of any
particular language are likely to be submerged and lost in a sea of prejudice.
Since 1970 high-level languages for the programming and construction of real-
time systems have become widely available. Early languages inciude: CORAL
(Woodward er al., 1970) and RTL/2 (Barnes, 1976) as well as modifications to
FORTRAN and BASIC. More recently the interest in concurrency and muiti-
processing has resulted in many languages with the potential for use with real-time
systems. These include Ada (see Young, 1982; Burns and Wellings, 1990), ARGUS
(Liskov and Scheifler, 1983), CONIC. (Kramer et al., 1983), CSP (Hoare, 1978),
CUTLASS (CEGB, see Bennett and Linkens, 1984), FORTH (Brodie, 1986),

196 Languages for Real-time Applications

Modula-2 (Wirth, 1982), occam (Burns, 1988), PEARL and SR (Andrews, 1981,
1982). The most widely used language for programming embedded real-time systems
is probably C. These languages range from comprehensive, general purpose
languages such as Ada and Modula-2 to more restrictive, special purpose languages
such as CONIC and CUTLASS. The advantage of the general purpose languages
is that they provide flexibility that can support the building of virtual machines;
for example, Budgen (1985) has shown how Modula-2 can be used to create a
MASCOT virtual machine. However, general purpose, flexible languages can be too
complex and permit operations that can compromise the security of a real-time
system, _

A language suitable for programming real-time and distributed systems must
have all the characteristics of a good, modern, non-real-time language; that is, it
should have a clean syntax, a rational procedure for declarations, initialisation and
typing of variables, simple and consistent control structures, clear scope and
visibility rules, and should provide support for modular construction. The additions
required for real-time use include support for concurrency or multi-tasking and
mechanisms 0 permit access to the basic computer functions {usually referred to as
low-level constructs).

Modula-2 and Ada represent two very different approaches to language design:
Moduia-2 is based on a small set of mandatory facilities which can be extended using
library modules, whereas in Ada all facilities considered necessary are mandatory
and extensions are prohibited. The benefits of Ada are that it is standardised and
hence application software should be highly portable; the disadvantages are size and
complexity. The reverse is true of Modula-2: although the core is standardised there
are many different sets of libraries supplied by different compiler implementers. For
example, input and output routines are not provided as part of the language but
have to be supplied as a library module and consequently the range and type of
routines differ according to the supplier. The advantages of the Modula-2 approach
are that the language is kept simple and the user can choose to add the features
necessary and appropriate to the type of application. The major disadvantage is the
loss of standardisation and hence portability.

5.15 APPLICATION-ORIENTED SOFTWARE

A large number of software packages and languages have been developed with the
intention of providing a means by which the end user can easily write or modify the
software for a particular problem. The major reason for wanting the end user,
rather than a specialist programmer, to write the software is to avoid the
communication problem. A large proportion of ‘errors’ in a system arise from a
misunderstanding of the operation or structure of a plant by the programmer. This
is not-always the programmer’s fault; often the engineers and managers responsible
for the plant do not communicate their requirements clearly and precisely.

Application-oriented Software 197

The misunderstanding can largely be avoided if the engineers responsible for the
plant can themselves write the software.

The engineers are not, however, expected to be specialists in computer
programming and hence they must be provided with simple programming tools
which reflect the particular application. Because for a given type of application, for
example process control, the range of facilities required is small and predictable, it
is not too difficult to devise special application software.

Three main approaches are used:

1. table-driven;
2. block-structured; and
3. specialised languages.

These are considered in more detail in the following sections.

Operator o Data and o User-written
communication parameter application
table - programs

i

Table-driven
program

]

Computer
1/Q interface

Plant

Figure 5.2 Simple table-driven system.

198 Languages for Real-time Applications

5.15.1 Table-driven Approach

The table-driven approach arose out of systems programmed in assembly code. It
was soon realised that many code segments were used again and again in different
applications as well as in the particular application. For example, the code segment
used for PID control need only be written once if it contains only pure code and
all references to parameters and data are made indirectly.

A simple table-driven system is illustrated in rigure 5.2. As well as allowing the
control program to communicate with the data and parameter table, provision is
also made for the operator to obtain information from the table (and in some
instances to change values in the table). In addition some systems. allow the user to
write application programs in a normal computer language (usually FORTRAN or
BASIC) which can interact with the table-driven software. The actual table-driven
program is supplied as part of the system and cannot be modified by the user.

An alternative approach is shown in Figure 5.3 in which a database manager
program is inserted between the data table and all users; access to the data table is
now controlled by the database manager. The use of a database manager to control
access places additional overheads on the system and can slow it down. It has the
advantage of improving the security of the system in that checks can be built into
it, for example to limit the items which can be changed from the operator’s console,
or to restrict the access of user-written application programs to certain areas of the
data table. Typically a database manager program would provide, by means of a
password or a key-operated switch on the console, different access rights to the
operator and the plant engineer. .

A crucial factor in the usefulness of table-driven software is the method of
setting up and modifying the tables. There are three main methods:

1. direct entry into the data tables;
2. use of language DATA statements; and
3. the filling in of forms.

In the simplest systems the data has to be entered into specified memory
locations, but this method is rarely used nowadays. It is more normal for the entry
program to allow names to be used for the locations. Thus, for example, in a system
with eight analog inputs the conversion values for each channel may be set by
entering from a keyboard statements such as

950.2
0.328

ANCONY (1)
ANCONV (6)

non

which would set the conversion factors for the signals coming in on channels 1 and
6. On some systems it is possible to specify signal names rather than use the table
index numbers. For example,

FEEDFL
FEEDTP

ANINP (1)
ANINP (2)

Application-oriented Software 199

Data and
parameter
table

!

Operator - Database w1 User-writlen

communication manager application
et ———— - programs

!

Table-driven
program

\

Computer
I'O

Plant

Figure 5.3 Use of table-driven system with database manager.

would specify that the signals on analog inputs 1 and 2 are to be known as FEEDF L
(representing, say, feedwater flow rate} and FEEDTP (representing feedwater
temperature). Once such names have been declared they can be used elsewhere to
reference the particular signals. This is a feature which is useful when user-written
application software is used, say, to produce specialised displays.

The use of language statements to set up the data tables is useful in large systems
for initially setting up the system. It is normally supplemented by aliowing changes

200 Languages for Real-time Applications

to be made, from the operator keyboard, cither of all entries or of selected entries,
It has the advantage that meaningful names can be given to the entries at initial
setting-up time; subsequent modifications_ are then made using the plant names
rather than the table entry index. ‘

The most commonly used approach is to provide a form into which data relating
to the system is entered. In the early systems data was transcribed onto punched
cards and then read into the system; now the form is presented on the screen and
the data entered directly. Usually some type of ‘forms’ processor is provided which
checks data for consistency as it is being entered and prompts for any missing data
(Figyre 5.4).

Table-driven software is very simple to use; it is, however, restrictive in that
maximum numbers for each type of control (loop, input and output) have to be
inserted when the system is configured and these cannot be changed by the user.
Because of this a similar, but more flexible, approach based on the use of function
blocks has been deveioped.

5.15.2 Block-structured Software

The software supplied in a block-structured system consists of a library of function

Forms: -
. Forms
mput and
display B processor
i
]
Operator - Data a:\d - Application
communication parameter programs
- table
]
|
Table-driven
program

— e e et

Figure 5.4 Forms processor for table-driven system.,

1f the input is from another block, enter the block number. 53
or
If the input is fram the PCM, enter the register number. (0-59> ED]

ar
1f the input is from the Analog Input Module, enter the following:
Analog Input Module Type {1=contact, 2=fixed gain,
3sprogrammable gain,
4=[nterspec) %)

If type 1, enter the following information:
Multiplexer address. (0-1023) 53
Gain code. {0=1v, 2=50v, 3=10MV}

1f type 2, enter the following information:
Next address. (0-15) 5%
Card address. (D-13)
Point address. (0-7>
Gain code. (O=xq, 1=x2, 2=x1, 35xy)
(Note: xqy-xg are defined at SYSGEN time)

1f type 3, enter the following information:
Next address. (0-15) 53
ctard address. (0-13)
point address. (0-7)
Gain code. (3=1¥, 4=500MV, 5=200Mv, 6=100MV, 7=50Mv,
8=20Mv, 9=108V)
Bandwidth. (O=1KH, 1=3KH, 2=10KH, 3=100KH)

If type &, enter the following infarmation:
I[SCM number. (1-3) 5)
CCM number. (1rié)
Type of input, {(M-Measurement, s-Setpoint, 0-Output!
Point number. (1-163

Range of the input in engineering units:
Lowest value. (-32767. to +32767.) 6)
Highest value. (-32767. to +99999.)
Units. (As specified by user at System Generation.)

signal conditioning index. g-7) 7
Thermocouple type i ¥ thermocouplie input is through the Analag
Input Module. {J, K, T, R) {Otherwise enter 11.1]

Linearizationpoiynomial index. ¢0-511) [Eor signal canditiening indexes
Oor5only Enter Santy if input is from PCM.]

Is digital integration required (Y ar N) 8)
1t ¥, enter integration rultiplier K1, ¢1-327672
and integrationdivisor K2. (1-32747)
1f N, snter the smoothing index. (0-63)

[operator Console Number (1, 2, ar 3) 11)J

Process unit number (1-127;0=none)

I Block description for alarmmessages, Leading and imbedded blanks witl pe included. 13)_I

1s a supervisory program called when an atarmoccurs? {Yor N) 15)
1fY, enter program ¢all number. (0-20472

should this block inhibit the passing of initialization requests?
(Y or N) 18)

If an input fails, should this block continue control using the tast good value?
(YorN} . 19)

Figure 6.6 Typical layout sheet for forms entry ladapted from Mellichamp, Real-time
Computing, Van Nostrand Reinhold {1983}}.

202 Languages for Real-time Applications

blocks (scanner routines, PID control, output routines, arithmetic functions, scaling
blocks, alarm routines and display routines), a range of supervisory programs and
programs for manipulating the block functions. The engineer programs a control
scheme by connecting together the various function blocks which he or she requires
and entering the parameters for each block. This is typically done using a VDU with
a graphical representation of the block connections. An example of the information
which has to be supplied is shown in Figure 5.5,

The block-structured approach is used in a wide range of systems, from large
process control systems with several hundred loops and multiple operator display
stations to simple programmable controllers used for sequence control. The range
of controllers available is shown in Figure 5.6,

5.15.3 Application Languages

Application languages range from simple interpreters which allow for interaction
with table-driven or functional block systems to complex high-level languages which
have to be compiled. The major feature of such languages is that they provide a
syntax which reflects the nature of the application. In the following section a large,
complex application language is described in outline,

Software functions: Basic Advanced Process
Boolean Block transfer Signalling
Timers Jump Monitoring
Counters File PID control
Data move Shift registers Communication
Comparison Sequencers Logging
Arithmetic Floating point Display
Hardware functions: Small PCs Large PCs
Inputs 16 4096
Outputs 16 4096
Timers 8 256
Counters 8 256
User program 2K 48K
Cycle time (per 1K) 100 ms I ms

Figure 5.6 Block functions in programmable controllers.

CUTLASS ‘ 203

5.16 CUTLASS

CUTLASS is a high-level language which is oriented towards use by the engineer
rather than the professional programmer. It has been developed by the UK Central
Electricity Generating Board with the aim of enabling engineering staff to develop,
modify and maintain application software independently of professional software
support staff. '

The major requirements which CUTLASS had to meet are:

1.

It should be suitable for a wide range of applications within power stations.
All applications packages should operate within the same general
framework so that future developments can easily be incorporated without
rendering obsolete previous work. To achieve these aims the language was
developed in the form of a number of compatible subsets which cover the
following functions:

(a) modulating control;

(b) data logging;

(c) data analysis;

(d) sequence control;

(e) alarm handling;

(f) visual display; and

() history recording.

These subsets operate within a framework which provides:

(a) a real-time executive — TOPSY;

(b) communications network management,

(c) support facilities; and

(d) integrated IfO and file handling.

The software should have a high degree of independence from any
particular computer type. This is a particularly important requirement for
software which is expected to have a long lifetime — 20 to 30 years — during
which period the actual control computers may have to be replaced and it
is important that this can be done without having either to use obsolete
technology or to incur high program modification costs. In order to achieve
this the CUTLASS language has been written in CORAL.

The software should be simple and safe to use so that engineers based in
the power station can produce and modify programs. This has been
achieved by providing within the language an extensive range of subroutines
and by hiding the detailed operational and security features from the
user.

5.16 1 General Features of CUTLASS

The basic unit of a CUTLASS program is a SCHEME which is an independently

204 Languages for Real-time Applications
compilable unit. A SCHEME is defined as

<subset type> SCHEME <name>
GLOBAL <data>

COMMON <data>

TASK <gualifying data>
TASK <qualifying data>
ENDSCHEME

A scheme may contain any number of tasks and a program may contain any number
of schemes. The schemes may run on different computers in a distributed network.
The software is developed on a host machine and downloaded to the target
machine(s); a typical system is shown in Figure 5.7. During the operation of the
overall system the host may remain connected to the target systems.

In addition to the schemes generated by the programmer, support software —
including the TOPSY executive — is loaded into the target machine. The schemes
can be enabled and disabled by the user from a keyboard connected to the target
machine or from the host machine or from within a supervisory task.

As an example of the division of the software for an application into schemes
and tasks, consider the hot-air blower system described in Chapter 1. For this system
it is required that the temperature measurement be filtered by taking a running
average over four samples at 10 ms intervals. The actual control is to be a PID

Host

Possible target
to target serial link

RS232 (RS232)
serial links
Target | Targeti f~-std~-1 Targetn
I I |
l
| I I
! | !
1 | :
To plant To plant To plant

Figure 6.7 CUTLASS host—target configuration.

CUTLASS ' 205

controller running at 40 ms intervals. The display of the input, output and error is
to be updated at 5 s intervals.

EXAMPLE 5.15
Scheme and Task Qutline

1. TEMPERATURE CONTROL SCHEME
1A TASK FILTER RUN EVERY 1O MSECS
Reads temperature from heater and computes the
running average.
1B TASK TEMPCON RUN EVERY 40 MSECS
Uses the average temperature ocbtained from
filter and computes, using a PID control
algorithm, the output for the heater.
2. DISPLAY SCHEME
2A TASK DISPLAY UPDATE RUN EVERY 5 SECS
Update the display with the values of
temperature, error and heater output.

A possible arrangement is shown in Example 5.15 in which the program is split
into two schemes: TEMPCON, used for the control of the temperature in which there
are two tasks (FILTER and TMPCON), and DISPLAY in which there is one task,
UPDATE.

The timing of the tasks is controlled by TOPSY and the timing requirement is
specified as part of the task qualifying data. The syntax is
TASK <identifier> PRIORITY = <priority Level> RUN
EVERY <integer> <time interval>
jdentifier = name
priority lLevel =1..250
time interval = (MSECS:SECS:MINS:HOURS:DAYS)

The outline of the TEMPCON scheme would be as follows:
DDC SCHEME TEMPCON

variable declaratipns placed here

ASK FILTER PRIORITY=240 RUN EVERY 10 MSEC
task Local declarations placed here

TART

task body

b
’
H
T
H
'
H
S
H
’
H
E

NDTASK

206 Languages for Real-time Applications

; .
TASK TMPCON PRIORITY=225 RUN EVERY 40 MSECS

!
; task declarations

START
H

; task body

ENDTASK
ENDSCHEME

As is seen from the above statements, the TOPSY executive supports CYCLIC- or
CLOCK-based tasks; it also supports a DELAY timing function, but the DELAY
function can be used only within the GEN subject, and then only for tasks which are
non-repetitive. b '

5.16.2 Data Typing and Bad Data

As in Pascal, CUTLASS requires all variables to be associated with a data type when
they are declared. The types supported are: logical, integer, real, text, string, array
and record. _

An additional feature which is used in CUTLASS is that variables can be flagged
as good or bad. The concept of ‘bad’ data is useful in an environment in which a
large number of values are derived from plant measurements. Instruments on the
plant can become faulty and supply data which is incorrect. It is often easy to detect
when an instrument is supplying false information as when, for example, typical
plant transducers supply signals in the range 4-20 mA,; if the signal falls below 4
mA it is an indication that the transducer is faulty. The difficulty arises in
transmitting through the system an indication that the reading from that particular
instrument is faulty.

The ultra-safe approach would be to put the whole scheme into manual mode
and allow the operator to take over until the instrument is repaired or replaced. In
many circumstances such extreme action may be unnecessary; the instrument may
only be supplying an operator display, or there may be an alternative measurement
available.

The approach adopted is to mark the data value as bad and allow the bad data
to propagate through the system, action, if necessary, being taken elsewhere in the
system. The rules used in the propagation of bad data produce a result which is
marked as bad if any of the operands in an arithmetic operation are bad. For
example,

B+¢(C
b/cC

A:
E

CUTLASS & 207

would result in E being marked as bad if 8 were bad. The rules for propagation
through logic operations are slightly more complex in that a logic variable which is
bad is treated as a ‘don’t know’ condition. For example,

MODEA := (TEMP > 30.0) OR FANRUN

would produce a valid result if TEMP was bad and FANRUN was trug, but a bad
value if FANRUN- was false. An advantage of the bad data flagging is that large
sections of the code can be written on the assumption that the data is good: if it is
not good then the fact that it is bad will be automatically propagated through the
system to the point at which action must be taken.

5.16.3 Language Subsets

The language is divided into four subsets which share some common features but
which perform essentially different functions. A scheme may use only instructions
from one subset and the subset being used is declared as part of the scheme heading.
The subsets are:

1. GEN A general purpose subset which is used to support text input and
output; a scheme which uses only the features common to all subsets is also
referred to as a GEN scheme.

2 DDC This subset provides the set of instructions used for direct digital
control algorithms. '

3. SEQ A subset which supports the construction of sequential control
algorithms; there is some restriction on the use of the common language
features within an SEQ scheme,.

4. VDU A subset which provides graphical and text support for a range of
VDU including both colour and monochrome devices.

Some indication of the power of the DDC subset can be obtained from the list of
instructions supported which is shown in Figure 5.8.

5.16.4 Scope and Visibility

The CUTLASS system has very simple scope and visibility rules. Objects declared
within a task are local to that task: the scope extends throughout the task and the
object is visible within the body of the task. The object is not visible within a
subroutine called by the task.

Variables may be shared between tasks by declaring them in a COMMON block
in the scheme declarations. The compiler restricts variables declared within the
COMMON block to the sharing of information between tasks and prevents their use

208 Languages for Real-time Applications

Function Output
Non-history-dependent functions

AVE average of all good inputs

EAVE average of all inputs; if any input is bad then output is bad
MIN minimum of good inputs

AMIN absolute minimum of good inputs

EMIN minimumof inputs; if any input is bad then output is bad
EAMIN absolute minimum of inputs; if any is bad then output is bad
MAX maximum of good inputs

AMAX absolute maximumof good inputs

EMAX maximum of inputs; if any is bad then cutput is bad

EAMAX absalute maximum of inputs; if any bad then output bad
INHIBIT depends on condition of inhibit raise and lower flags

INCS converts integer value to incrementat units

LIMIT Limit range of real variable

BRAND deadband function
Kistory-dependent functions

BUCKET counts increments supplied and used

FLIPFLOP logical flipflop triggered at twice the task repeat interval
CHANGE logic function A=A, FOR 4,_,

RISING logic function A=A, AND HCT {4,

FALLING logic function A, NOT (4,) AND 4, _,

ALC sets accumulator te aninitial condition

ACCLIMIT sets hard Limits an an accumulator

Bistory- and time-dependent functions

INT approximate integrator

DELTA approximate differentiator

FIRST first-order filter

IMCPID incremental PID control algorithm, includes roll-off filter
pID absolute PID algorithm inctuding roll~off filter

EFORM centroller expressed as a polynomial in 2

RAMP Limits rate of change of a variable.

Figure 5.8 Example of a CUTLASS DDC scheme {reproduced with permission from
Bennett and Linkens, Rea/-time Computer Control, Peter Peregrinus (1984)).

as local variables as well by enforcing the following rules:

1. Only one task may write to a COMMON variable. For this purpose arrays
are treated as indivisible objects so that if a task writes to an individual
element of an array then all the elements become write only for that task.

2. Tasks are not allowed read access to variables to which they write.

Communication between tasks in different schemes is by means of GLOBAL
variables. These variables can be created only by use of a special utility which is run

A Note on BASIC 209

by a privileged user. GLOBAL variables are owned by the user who created them
and may be removed only by the owner. The same access rules as for common
variables are applied to GLOBALSs with the added restriction that only a task
belonging to the owner of a GLOBAL variable may write to that variable,

The rules are relaxed for tasks which belong to users with privileged status such
that:

1. GLOBALs may be declared as private to the user.

2. GLOBALs may be written to by more than one task (subject to the
ownership rule).

3. Tasks may have both read and write access to the variable.

5.16.5 Summary

CUTLASS represents an attempt to resolve many of the problems which arise in
real-time systems. It does not purport to be a general purpose language and hence
the solutions which are adopted are not always particularly elegant. The emphasis
in the system is on enabling inexperienced computer users to write reliable, secure,
programs. In this the language is successful.

However, the overall system is complex and setting up and maintaining it
requires the support of experienced computer staff. This does not detract from one
of the aims of the system, which was to allow engineers to write their own
application programs,; this has been achieved. It would be difficult, however, to
operate the CUTLASS system in an organisation which did not have expert
computer staff.

Although the language syntax is an improvement on CORAL 66, readability is
not high in that identifiers are restricted to nine characters and must be in upper
case. A further restriction is that user subroutine libraries cannot be developed; all
user (as opposed to system) subroutines must be included within the TASK
declaration area in soutce code form. The language suprotts constants in a useful
form, variables can be preset and such variables are then treated as read-only
variables.

5.17 A NOTE ON BASIC

BASIC (Beginners’ All-purpose Symbolic Instruction Code) was developed as a
language which would provide a reasonably powerful range of facilities but which
would be easy for the novice to learn and use. In particular the use of an
interpretative mode of implementation was intended to make the writing, running
and debugging of programs as quick and easy as possible. There is little doubt that
BASIC has achieved the designer’s aims and its widespread availability on
microprocessor systems has also contributed to its use.

210 Languages for Real-time Applications

There are now many versions of BASIC with numerous extensions to the
original language, some of which make them suitable for certain types of real-time
systems, for example experimental, -prototype and development work where the
speed and ease with which BASIC programs can be written and debugged is a great
advantage, These BASICs can also be used for small systems where safety is not a
major issue.

The simplest extensions to BASIC which provide support for embedded system
use are the provisions of low-level access mechanisms. Other extensions include
functions for handling input and output to analog-to-digital and digital-to-analog
converters (see Mellichamp, 1983), event handling (interrupts) and multi-tasking.

The simplest form of event handling allows the use of statements of the form

ON EVENT GOSUB <n>

where <n> is a specified line number. This may be extended in some BASICs to
allow several different events: T

ON INTERRUPT(O GOSUB <n1>
ON INTERRUPTT GOSUB <n2>
ON TIMEOUT GOSUB <n3>

The 60SUB is used so that a RETURN statement can be used to indicate the end of
the section of code for the particular event. Further extensions provide support for
multiple tasks.

Each task body is indicate by statements

TASK <name>
EXIT
which are used to bracket the statements which form the task. The task remains

dormant (in terms of the task states described in Chapter 6, existent but not active)
until an ENABLE statement is executed:

ENABLE <name> EVERY 10cs
or

ENABLE <name> WHEN event

The tasks can be disabled by the statement b1 SABLE <name>.

The major advantage of BASIC is the ease with which the language can be
learnt. If well-trained programmers with experience of other languages are not
available then BASIC may be a very sound choice and result in better, more secure
software than could be achieved by using an inherently more secure language.

Exercises ‘ 21%
5.18 SUMMARY

In this chapter we have reviewed some of the important language features that might
influence our choice of a language for writing real-time software. Particular
attention has been paid to elements of languages that contribute to the security of
the resulting software. We have not attempted to compare real-time languages; if
you are interested in such comparisons you will find a brief survey in Cooling (§991)
and a more extensive survey in Tucker (1985). For a greater in-depth study of real-
time languages see Young (1982) and Burns and Wellings (1990).

EXERCISES

5.1 Define the scope and visibility of the variables and parameters in the following code:

MODULE MyProgram;
VAR A,B:REAL;
C,D:INTEGER;
PROCEDURE Pone (AT:REAL; VAR A2 :REAL);
VAR M,N:INTEGER
BEGIN (* Pone *)

END Pone
PROCEDURE Ptwo;
VAR P,D:INTEGER;
Q,R:REAL;
BEGIN (" TWO ™)

Pone (Q,R);

END Ptweo;
BEGIN (*MyProgram®)

END MyProgram.

5.2 In the computer science literature you will find lots of arguments about ‘global’ and
‘local’ variakles. What guidance would you give to somebody who asked for advice
on how to decide on the use of global or local variables?

5.3 How does strong data typing contribute to the security of a programming language?

5.4 Why is it useful to have available a predefined data type BITSET in Modula-2? Give
an example to illustrate how, and under what circumstances, BITSET would be used.

6

Operating Systems

This chapter is not a complete discussion of operating systems. In it we concentrate
on the aspects of operating systems that are particularly relevant to real-rime control
applications. We first look at what they are, how they differ from non-real-time
operating systems and why we use them. We will then examine in-some detail how
they handie the management of tasks. Finally, we will [ook briefly at some ways of
implementing real-time operating systems.

The aims of the chapter are to:

e Explain why we use a real-time operating system (RTOS).

Explain what an RTOS does.

e Explain how an RTOS works.

® Describe the benefits and drawbacks of an RTOS,

® List the minimum language primitives required for creating an RTOS.

® Describe the problem of sharing resources and explain several techniques
for providing mutual exclusion.

#® Explain what a binary semaphore does and write a program in Modula-2 to

demonstrate its use.
® Describe and explain the basic task synchronisation mechanisms.

6.1 INTRODUCTION

Software design is simplified if details of the lower levels of implementation on a
specific computer using a particular language can be hidden from the designer. An
operating system for a given computer converts the hardware of the system into a
virtual machine with characteristics defined by the operating system. Operating
systems were developed, as their name implies, to assist the operator in running a
batch processing computer; they then developed to support both real-time systems
and multi-access on-line systems.

The traditional approach is to incorporate all the requirements inside a general
purpose operating system as illustrated in Figure 6.1. Access to the hardware of the
system and to the IfO devices is through the operating system. In many real-time

212

